Ricardo Cordero - Soto And

نویسنده

  • SERGEI K. SUSLOV
چکیده

We evaluate the matrix elements 〈r〉 for the n-dimensional harmonic oscillator in terms of the dual Hahn polynomials and derive the corresponding three-term recurrence relation and the Pasternack-type reflection relation. A short review of similar results is also given. 1. An Introduction The purpose of this note is to present a simple evaluation of the expectation values 〈r〉 for the n-dimensional harmonic oscillator in terms of the dual Hahn polynomials by direct integration. Other methods of solving similar problems in elementary quantum mechanics appeal to general principles and involve the Hellmann–Feynman theorem (see [5], [6], [7] and references given there, textbooks [24], [30], [10], [38]), commutation relation ([21], [18], [40], [41]), and dynamical groups ([2], [3], [8], [9], [15], [35], [39]). Our approach allows to study these expectation values with the help of the advanced theory of classical polynomials [23], [33]. We recall also that the first-order of the time-independent perturbation theory equates the energy correction to the expectation value of the perturbing potential. Thus expressions of the form 〈r〉 gain utmost importance. 2. Expectation Values 〈r〉 for Coulomb Problems The problem of evaluation of matrix elements 〈r〉 between nonrelativistic bound-state hydrogenlike wave functions has a long history in quantum mechanics. An incomplete list of references include [1], [2], [7], [10], [11], [12], [13], [14], [15], [18], [21], [24], [26], [27], [30], [31], [35], [36], [37], [38], [43], [46], [47], [51], and [53] and references therein. Although different methods were used in order to evaluate these matrix elements, one of possible forms of the answer seems has been missing until recently. In Ref. [46] the mean values for states of definite energy

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Parallel Sorting for Migrating Birds Optimization When Solving Machine-Part Cell Formation Problems

Ricardo Soto, Broderick Crawford, Boris Almonacid, and Fernando Paredes Ponti0cia Universidad Católica de Valparaı́so, 2362807 Valparaı́so, Chile Universidad Autónoma de Chile, 7500138 Santiago, Chile Universidad Cient́ı0ca del Sur, Lima 18, Peru Universidad Central de Chile, 8370178 Santiago, Chile Universidad San Sebastián, 8420524 Santiago, Chile Universidad Diego Portales, 8370109 Santiago, Chile

متن کامل

A reactive and hybrid constraint solver

A reactive and hybrid constraint solver Eric Monfroy a b , Carlos Castro c , Broderick Crawford d , Ricardo Soto d e , Fernando Paredes f & Christian Figueroa g a Departemento de Informática , Universidad Técnica Federico Santa María , Av. España 1680, Valparaíso, Av. Chile b Département d'Informatique , Université de Nantes , France c Departemento de Informética , UTFSM , Valparaíso , Chile d ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009